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Abstract 

Rail surface faults or deformities that form on railhead of the track, owe their              
existence to various operational and environmental factors. To ensure comfortable          
and safe operation of railway vehicles, on-time detection of these surface faults is             
necessary. It is also of paramount importance that fault types are identified because it              
can lead to the identification of causes. This eventually leads to development of better              
maintenance strategies. Automation of the rail inspection is highly desirable because           
it results in accurate, robust, and cost-effective condition monitoring of the railway            
track. Automated systems of track monitoring currently in use are highly           
sophisticated instrumentation systems, with high-speed cameras and equipped with         
state-of-the-art level hardware. In this research, a preliminary work towards          
developing a low-cost rail condition monitoring system is presented. A suitable action            
camera EKEN-H9R is used to acquire videos of track surface. This data is             
preprocessed and later used to train data-driven models for fault identification. A            
comparative analysis of multiple data-driven classification algorithms is conducted on          
the acquired data and research is concluded with support vector machine algorithm            
which was able to achieve about 96% accuracy on the fault classification task. 
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1. Introduction 
Deformities on rail surface occur due to various causes such as fatigue, repetitive             
passing of rolling stock over welds, joints, switches, or impact of a damaged wheel.              
These deformities need to be detected and treated on time to avoid the chance of a                
critical failure or further degradation of the rail. Either of which can result in delay of                
the train, high maintenance cost, and higher risk to the safety of passengers [1]. The               
existence and severity of surface faults depend upon various operational and           
environmental factors. These deformities develop in many forms and shapes.          
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However, this research targets four surface fault types abundantly sighted in           
Pakistan’s railroad infrastructure. Faults targeted in this research are shown in Figure            
1: Flaking is commonly found near the gauge corner of rail, identified with scaling or               
chipping of small slivers on the running surface. Shelling on the other hand usually              
forms on the gauge side of the railhead and is identified as progressive horizontal              
separations. Subsequently, spalling is identified as displacement of parent metal from           
the railhead because of high contact stresses whereas, squats form in an oval-like             
shape and result in widening of the rail running band [2]. 

 

 
Figure 1: Prominent Rail Surface Deformities 

 
Automation of the railway track monitoring is desirable due to manual inspection’s            

obvious limitations. Manual/detailed inspection of the rail track is difficult and           
time-consuming. It requires trained individuals to ensure the exclusion of errors           
during the inspection [3]. Therefore, automatic detection of faults is important to            
improve performance and safety. In the past few years, various methods have been             
employed for automated railway track condition monitoring. New advancements in          
the field of machine vision and pattern recognition have fueled the development of             
visual inspection systems (VIS) [4]. However, the majority of these VIS’s are highly             
sophisticated instrumentation systems and also very expensive. These VIS’s         
incorporate high-speed cameras, capable of grabbing 5000 frames per second (FPS),           
state of the art processing hardware to deal with enormous data flowing into the              
system, and illumination schemes to ensure quality data acquisition. The emergence           
of data-driven models in the field of pattern recognition and their deployment to solve              
domain-specific problems has achieved promising results [3]. These models have the           
ability to work with raw data and provide good end to end prediction capability.              
Therefore, in this research with the intent of developing a cost-effective VIS solution             
we try to take advantage of the prediction power of data-driven models to compensate              
for high-quality data and sophisticated hardware. We test various data-driven          
algorithms on fault classification/identification task from raw image data. Rail surface           
defect data is collected from Kotri Junction and its vicinity. Different algorithm’s            
generalization capability is compared by subjecting them with unseen data. 
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2. Related work 

In [5] Alnaimi and Qidwai et al., proposed an automated system that uses             
convolutional neural network to classify captured images into normal and abnormal           
classes. The proposed system also marks the location details of abnormal images for a              
detailed inspection by human experts. In [6] Wei et al., Used deep learning and              
image processing techniques for detection and classification of rail fasteners into           
classes (normal, broken, and missing), spalling, and corrugation. Data augmentation          
techniques are used to balance the classes due to small number of defect images. In               
[7] Niu et al., developed a system based on global low rank and non-negative              
reconstruction (GLRNNR). The system can obtain precise stereoscopic images along          
with profile information for building a data set of defects. Experimental results of the              
proposed method show good accuracy. In [8] Gan et al., proposed a novel BODI              
(background-oriented defect inspector) for the detection of rail surface faults. The           
proposed method uses a random strategy to generate background information and           
perform several statistics operations on samples to validate that the pixels under            
observation belong to a specific background class or not, during experimental study            
the method performed well. In [9] Wang et al., proposed an entity sparsity pursuit              
method that extracts features from input images to detect surface fault, the proposed             
method can detect faults from various data sets in an unsupervised manner.            
Experimental results show that the method performed well on all datasets. In [11] Yu              
et al., proposed a novel coarse-to-fine method to detect faults by considering pixel             
consistency. Performance of the proposed method was tested on the rail line by             
installing line scan cameras with led lights under the test train. In [12] Min et al.,                
proposed a system based on machine vision for detection of defects using plane array              
CCD cameras along with light sources installed on inspection vehicles. The proposed            
system performs various image enhancement techniques to improve the quality of           
data. In [13] Zhuang et al., developed a system based on extended haar-like features              
and cascading classifiers (logitboost algorithm) for crack registration and boundary          
identification, the method is validated on image data set provided by Hong Kong             
mass transit railway and china railway corporation. According to experimental results,           
the data-driven method proposed in this study performed well for crack registration            
and boundary detection. In [14] Li et al., proposed a cyber-enabled visual inspection             
system based on rail locating algorithm, weighted projection profile (RLWP), and           
SVM classifier for detection of rail corrugation. The proposed system is based on an              
image acquisition system and a corrugation identification system, acquired images are           
segmented according to the algorithm based on weighted projection profile which           
detects only rail from the input image. Images are detected as corrugated or not by a                
binary SVM classifier. In [15] Gan et al., proposed an automatic visual inspection             
system based on a novel hierarchical extractor (coarse and fine extractor), which            
capture images through a camera then feed them to an inspection framework which is              
based on several extractors to find background modes, reduce the effect of noise, and              
remove irregularities. The proposed method showed good accuracy on the defect           
dataset. In [1] Jamshidi et al., developed an image processing technique that relies on              
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deep convolutional neural network, for detection and classification of squats and their            
severity by measuring their length and estimates the probability of failure, estimations            
are done on samples taken from the track of Dutch railway system. In [16] Ma et al.,                 
proposed a method based on generalized hough transform and SVM classifiers for            
automatic detection and classification of severity levels of defects from images           
collected by high-resolution cameras installed with laser light source for illumination.           
In [3] Faghih-Roohi et al., compared training time and classification performance of            
three DCNN structures for classification of images from six classes (normal, joint,            
weld, severe squat, moderate squat, and light squat). The large DCNN proposed in             
this study achieved classification accuracy of 92%. However, the majority of the            
above-mentioned methods focus on detection of the surface faults [7, 9-15, 17]. Fault             
type identification is not the focus of these studies which is crucial for a variety of                
reasons. Fault classification leads to the identification of the cause and helps            
determine more appropriate action in order to remove or minimize the cause. Few of              
the above-mentioned studies do employ methods to identify types of faults but focus             
either on different types of faults as targeted in this study [6][18][3][1] or simply              
avoid defining the types of faults being classified [5][16]. Moreover, bulk of the             
research employs highly sophisticated instrumentation systems with components such         
as illumination schemes to ensure high-quality data acquisition. Contrary to that, this            
research works with noisy and raw data as acquired on-site with a low-cost image              
acquisition device and aims at harvesting the end-to-end prediction capability of           
data-driven models. 

 
3. Methodology 
In Figure 2: step by step methodology followed during this research is shown. Video              
acquisition is done through two EKEN-H9R cameras mounted on both sides of the             
inspection vehicle as shown in Figure.2. Cameras are capable of recording videos at             
120 FPS and have a FOV (field of view) of approximately 14 inches. Unnecessary              
parts of the collected videos were later removed in the second step. Frames needed to               
ensure the inclusion of every useful information possible were calculated as shown in             
Equation ​1. 

Table 1: Details of gathered data after labeling 
 

 

14 

Cracks 51 
Flaking 2850 
Joint 9 

Shelling 231 
Spalling 296 

Squat 2163 
Groove 8 

Miscellaneous 79860 
Total 85468 
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Figure 2: Research Methodology and Video Capturing Setup 

 
 

 …..​(Equation 1)rames Required  × F = 2 F ield of  V iew (meter)
Assumed Maximum Speed of  V ehicle ( sec)

meter

 
 
After extracting required frames out of videos manual labeling of the images was             

done. Table 1 shows the details of the data gathered. Data gathered on-site and              
manually labeling resulted in a class imbalance problem. Grooves, Joints, and Cracks            
were barely represented and other types of faults also had a large difference of              
samples. Therefore, under-sampling of the majority classes (Flaking, Squat) was done           
and 230 images from four classes (Flaking, Shelling, Spalling, Squat) were selected.            
Out of total 920 images 70% are used for training the data-driven models and 30% are                
used for validation. Later, the region of interest (railhead image) was cropped out of              
full image. Various machine learning algorithms were implemented in this study,           
which have comparatively less computational cost than deep learning models.          
Machine learning models implemented include; Decision tree, K-nearest-neighbors,        
Logistic regression, Random forest, Naïve bayes, and also two variances of Support            
vector machines. Models were fed with RGB rail images of 700x200 cropped out of              
the recorded video. To test the learning capability of these models, no image             
enhancement or de-noising of the images was done. 

 
4. Results and discussion 

Classification algorithms of machine learning were one by one trained and evaluated            
on the dataset. Their performance was compared, details of this comparative analysis            
is given below; Decision tree which is one of the fundamental models used for              
classification purposes was implemented first. Decision tree keeps splitting the          
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features of a dataset into nodes and subnodes until feature space runs out. These nodes               
or branches represent different possible outcomes. An optimized version of the CART            
[19] based decision tree was implemented in this study. Figure 3: shows the confusion              
matrix of the decision tree obtained on the validation data. Promising accuracy is             
achieved on predicting shelling but struggles to predict other three classes. This is             
probably due to the fact that shelling in appearance is quite different from other              
classes and has different points of appearance in the images. Decision tree achieved             
81% average accuracy. However, it has 76.45 % accuracy if shelling is excluded. 

 
Figure 3: Confusion Matrix of Decision Tree 

 
K-nearest-neighbors were tried next. KNN works on multi-dimensional geometrical         

properties and Euclidian distance calculation for optimization of the results. Different           
points are initialized in the feature space and based on their Euclidian distance from              
the individual feature they are moved towards or away from features till the optimum              
position is obtained. K-nearest-neighbors achieve slight improvement in predicting         
flaking as shown in Figure 4: But, performs rather poorly on squats and spalling.              
KNN was able to achieve 74% average accuracy on predicting individual classes            
which falls mostly on the shoulders of shelling on which 100% is accurately             
predicted. However, performance on the other three classes has an average accuracy            
of 67.11% only and approximately 60% on spalling and squats.A multiple logistic            
regression unit’s model was implemented next. It achieved 79% average accuracy on            
individual classes. Figure 5: shows the performance of logistic regression model on            
individual class prediction. It is apparent that the model has a certain degree of bias               
towards squat class on which it achieves good accuracy however performs poorly on             
other classes. A different approach based on probabilistic calculations Naïve Bayes           
was implemented next. Naive Bayes is a combination of Bayes theorem [20] and             
maximum a posteriori. It was able to achieve 81% accuracy in predicting faults.             
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Figure 6: show the performance of Naïve Bayes. It seemed to have achieved a good               
generalization capability and good balance in prediction accuracy among different          
classes. However, overall performance was average. 

 

 
Figure 4: Confusion Matrix of K-Nearest-Neighbors 

 
A random forest classifier model was also implemented which achieved 92%           

average accuracy on the prediction task. Random forest proved to be by far the best               
model without any bias towards a certain class and performed effectively on all the              
classes as shown in Figure 7. 

 
 

Figure 5: Confusion Matrix of Logistic regression 
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Figure 6: Confusion Matrix of Naïve Bayes 

 
However, did perform poorly on predicting spalling. This is probably because           

spalling is the most unnoticeable faults in our prediction classes. Two variances of             
Support vector machine based classification were tried next, these algorithms try to            
find the equation of optimum position of the hyperplane which separates different            
classes in a multi-dimensional space. SVM Gaussian was able to achieve about 91%             
accuracy and surpassed every model tried in our study as shown in Figure 8.  

 

 
Figure 7: Confusion Matrix of Random Forest 

 
The polynomial version of the support vector machine resulted in even better            

performance which achieved 96%. And performed equally well on all the classes as             
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shown in Figure 9. The overall performance summary of all the data-driven models             
tried in this study is shown in Figure 10: in the form of bar graph. The bar graph                  
shows the score of each model on different evaluation matrices such as Precision,             
Average Accuracy, F1-Score, and Recall. These evaluation matrices are one of the            
most used methods of evaluating the performance of classification models. 

 
Figure 8: Confusion Matrix of SVM Gaussian 

 
Figure 9: Confusion Matrix of SVM Polynomial 

19 



Gyancity Journal of Electronics and Computer Science,  
Vol.6, No.1, pp. 11-21, March 2021  

ISSN: 2446-2918 DOI:​ 10.21058/gjecs.2021.61002  
 

It is evident from Figure 10: that all of our models have acquired consistent scores on                
different performance evaluation matrices. But support vector machine variances         
outperform all the other models in the classification task. 

 

 
Figure 10: Performance summary of data-driven models 

 
5. Conclusion and future recommendation 

In this research, preliminary work towards developing a low-cost rail condition           
monitoring system is presented. The distinct feature of this study is that it works with               
low-quality images acquired from EKEN-H9R cameras on-site without adding any          
illumination, feature extraction, or image enhancement techniques. We input raw          
RGB image to our models and obtain end to end prediction. This approach has proved               
to be successful and shows the potential of data-driven models to work with             
low-quality data and their deployment in fault identification scenarios. Our final           
model support vector machine polynomial achieves greater than 95% accuracy on           
identifying different surface faults without any bias towards a certain class. This study             
can be further extended by acquiring more data because some of the faults are rarely               
represented in our study and were ignored due to very reason. The class imbalance              
problem was solved with under-sampling of the majority classes. Data augmentation           
or oversampling techniques remains to be explored. Moreover, for this study we went             
through a trying process of manually labeling data, unsupervised approaches could           
also be explored.  
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