
Gyancity Journal of Electronics and Computer Science,
 Vol.2, No.1, pp.43-48, March 2017

 ISSN: 2446–2918 DOI: 10.21058/gjecs.2017.21005

43

VHDL Implementation of a Fast Division

Algorithm

1Sumit Kumar, 2Mandeep Narula, 3Shivam Chauhan
1,2Jaypee Institute of Information Technology, A-10, Sector-62, Noida (U.P.), India.

3G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India.

 1sumitkr.abit@gmail.com, 2 mandeep.narula@jiit.ac.in 3shivamchauhan581@gmail.com

Abstract-- Today is an era of digital or smart systems. All the smart gadgets or systems deal with binary operations

occurring inside in order to bring out the desired results. Several binary operations occurring inside the digital system

are very much known to us and are Binary addition, Binary subtraction, followed my multiplication and division.

These four are the basic ones however, there are many more advanced operations developed. Our work describes the

RTL (Register Transfer Level) depiction of Goldschmidt divider. The depictions are synchronized to the working

clock of the employed microprocessor. The significant operations that get a highlight in this work are that the divider

is synthesizable. VHDL is the software platform for our work. This work focuses to demonstrate that synchronized

applications can be actualized at the front-end level of VLSI architectural system. This project describes a basic

algorithm for a division operation. Its performance and consideration of the implementation in VHDL are discussed.

Keywords-- Smart system, binary operations, VHDL, VLSI

I. INTRODUCTION
Microprocessor, which is a backbone to any computer, is being driven or rather works in

synchronization with the operating clock of a computer. This clock is the active element that

controls every task or job assigned to the computer. Thereby, it also consumes the highest

electrical power within the computer. Designers for a decade have been trying to reduce down

the clock power using various techniques like clock gating. But all these techniques are done

at circuit level of the design which manifests to large investments. Therefore, the focus is to

accomplish it at block level abstraction of the design. VLSI (Very Large Scale Integration)

design methodology basically follows two design flows: (A.) Front–end design flow. (B.)

Back-end design flow. Major concern in back–end design flow is to lower down and optimize

the area, delay and power of the circuits. Here, designers deal with the transistor level

schematics and its corresponding layouts defining the original geometry of the design that

gets to fabrication. In front-end design flow, the major focus remains on the functionality of

the individual components allocated in the processor along with its overall functionality.

Now, in industry both these design methodology work hand in hand. Front-end flow does the

functional analysis of the design system. We are giving input to a known system and getting

an output as RTL description using at the back–end for circuit implementation. But on the

other hand, if we assume that we do not know the system and try to estimate the system using

the output and the input; it becomes difficult in regular cases. Therefore, the main purpose in

doing this work is to have a RTL description of Goldschmidt divider which are synthesizable

without even using the costly synthesis tools and are synchronized with the operating clock

of the computer. Our research describes a basic algorithm for a division operation. Its

performance and consideration of the implementation in VHDL are discussed. We have

described three possible implementations, the maximum performance in FPGAs, e.g.

propagation delays and number of necessary steps to list the correct result.

II. LITERATURE REVIEW

Gyancity Journal of Electronics and Computer Science,
 Vol.2, No.1, pp.43-48, March 2017

 ISSN: 2446–2918 DOI: 10.21058/gjecs.2017.21005

44

VHDL is a most commonly used and popular standard language in industry used to describe

the hardware from the abstract form to the concrete level [7, 8], technically from the design

specifications to the RTL (Register Transfer Level) descriptions. VHDL was proposed as an

IEEE standard in 1986. It is a very powerful and effective language with enormous language

constructs which are capable of describing very sensitive and complex behaviours. Amongst,

the commonly used HDL languages, divide and multiply operators are present. Though, in

general, they are not synthesizable. The use of procedures for synthesis is not frequent in this

language; more common is the use of functions. However, functions can return only one value

[4]. Use of procedure gives more compact solution with quotient and remainder as outputs in

the case of binary divider. Thus, we have shown the implementation of the designed

synthesizable multiplier and divider on to an ALU. The entire paper has been constructed in

sections. Section II defines the detailing of the programme-level architecture of ALU and its

peripherals. Section III states the VHDL description of the synthesizable binary multiplier &

divider and the section IV concludes the paper depicting the utility of the work. The

realization of a high-speed division function has always been a difficult task requiring a

considerable amount of hardware and power. In the past, integrated circuit manufacturers

have virtually ignored the division problem, placing a major portion of their efforts towards

the stand-alone multiplier chip. Many manufacturers now have 8- and 16-bit dedicated

multiplier chips that operate in the 100- to 200-ns speed range. The division operation has

received only moderate interest recently by Monolithic Memories Inc. [1], with their

introduction of their 57508 and 57516 multiplier/divider chips, and in the past by Advanced

Micro Devices [2] with their special function integrated circuit, the AMD 9511. Both of these

device types do provide a means for hardware division, but both fall short of the operating

speeds achieved by standalone multiplier circuits. The MMI 57516 device requires I to 3us

to produce a 16-bit result, while the AMD 951 1 requires about 50 ps. various hardware

techniques for high-speed division have been advanced in the literature but not commercially

produced [3]. This paper describes an efficient method for generating the quotient of two

binary numbers at speeds comparable to existing multiplier chips. The new method is labelled

the "best line approach." The reciprocal of the denominator is first generated and used for

subsequent multiplication by the numerator using a conventional multiplier chip. The best

line method closely resembles a two-term Taylor series approximation in that the reciprocal

is mechanized by forming the sum of a constant with the product of another constant and

variable. It will be shown that a carefully designed best line divider is statistically similar to

the reciprocal lookup table technique, and provides a binary divider that demands much less

board area and power.

III. SOFTWARE DESCRIPTION

There are two simulation software used:

1.) Modelsim6.1e:

Modelsim provides simulation environment by mentor graphics and has a C debugger built

in. It allows simulation of specific hardware description languages like SystemC, VHDL,

Verilog etc. Modelsim can be utilized autonomously, or in conjunction with Xilinx or Altera

Quartus. Simulation can be done automatically utilizing scripts or by utilizing GUI.

2.) Xilinx Vivado:

Vivado Design Suite is software created by Xilinx for analysis and synthesis of HDL outlines,

superseding Xilinx ISE with extra components for framework on a IC advancement and high-

performance synthesis. ISE depend on Modelsim in order to simulate, but this is not the case

with this software. Vivado has incorporated an embedded logic simulator and it additionally

Gyancity Journal of Electronics and Computer Science,
 Vol.2, No.1, pp.43-48, March 2017

 ISSN: 2446–2918 DOI: 10.21058/gjecs.2017.21005

45

presents abnormal state analysis, using a tool that changes C code into a logic that is

programmable.

IV. GOLDSCHMIDT DIVIDER

Goldschmidt division uses an iterative process of repeatedly multiplying both the dividend

and divisor by a common factor Fi, chosen such that the divisor converges to 1. This causes

the dividend to converge to the sought quotient Q. In this paper, we would examine a division

algorithm called Goldschmidt’s Algorithm, build hardware block diagram for it, and look for

a suitable reuse of the hardware without losing sync with the global clock. Goldschmidt’s

Division Algorithm was improved in an excellent manner and examined by. It not only visited

division but used this algorithm for Square Root and Square Root reciprocal also. The basic

Idea of this algorithm from the lines developed can be explained as follows. Assume

Numerator (N) and Denominator (D) to satisfy the constraint 1≤ N and D< 2 (considering

them as normalized significands of floating point numbers). The basic division method is

performed as follows: Quotient Q = N/D. The Goldschmidt’s algorithm points at finding a

sequence K1, K2, K3…. Ki such that the product ri = D. K1. K2. K3. K4. K5……. Ki

approaches 1 as it goes to infinity. Thus we have qi = N. K1.K2. K3 .K4.K5……….. Ki →

Q. K1 is obtained from the lookup table which is an optimal reciprocal table with p-bits in

and p+2 bits out that uses D as input and obtains a p+2 bit approximation K1 to 1/D. The

input bits and their accuracy considerations were met previously so we would rather go ahead

with the basic idea needed to develop Hardware architecture and look more into it.

V. ALGORITHM USED
Given

Dividend:

N−1=8610=01010110.0000000000002N−1=8610=01010110.0000000000002

Divisor:

D−1=710=00000111.0000000000002D−1=710=00000111.0000000000002

Correct result:

Q=N−1D−1=12.285714285714285714285714285714285714285714285714Q=N−1D−1=1

2.285714285714285714285714285714285714285714285714

Initial reciprocal is the inverse of divisor which is calculated by shifting bits around the

fraction point:

F−1=1D−1≈0.054687510=00000000.0000111000002F−1=1D−1≈0.054687510=00000000.

0000111000002

In this case we have 8 bits for integers and 12 bits for fraction digits.

Algorithm steps

Iteration #1:

N0=F−1×N−1=4.70312510=00000100.1011010000002N0=F−1×N−1=4.70312510=00000

100.1011010000002D0=F−1×D−1=0.382812510=00000000.0110001000002D0=F−1×D−1

=0.382812510=00000000.0110001000002

F0=2−D0=1.617187510=00000001.1001111000002F0=2−D0=1.617187510=00000001.10

01111000002

Iteration #2:

N1=F0×N0=7.60571289062510=00000111.1001101100012N1=F0×N0=7.6057128906251

0=00000111.1001101100012

Gyancity Journal of Electronics and Computer Science,
 Vol.2, No.1, pp.43-48, March 2017

 ISSN: 2446–2918 DOI: 10.21058/gjecs.2017.21005

46

D1=F0×D0=0.61889648437510=00000000.1001111001112D1=F0×D0=0.6188964843751

0=00000000.1001111001112

F1=2−D1=1.38110351562510=00000001.0110000110012F1=2−D1=1.38110351562510=0

0000001.0110000110012

Iteration #3:

N2=F1×N1=10.50415039062510=00001010.1000000100012N2=F1×N1=10.50415039062

510=00001010.1000000100012

D2=F1×D1=0.85473632812510=00000000.1101101011012D2=F1×D1=0.8547363281251

0=00000000.1101101011012

F2=2−D2=1.14526367187510=00000001.0010010100112F2=2−D2=1.14526367187510=0

0000001.0010010100112

Iteration #4:

N3=F2×N2=12.0297851562510=00001100.0000011110102N3=F2×N2=12.029785156251

0=00001100.0000011110102

D3=F2×D2=0.97875976562510=00000000.1111101010012D3=F2×D2=0.9787597656251

0=00000000.1111101010012

F3=2−D3=1.02124023437510=00000001.0000010101112F3=2−D3=1.02124023437510=0

0000001.0000010101112

Iteration #5:

N4=F3×N3=12.2851562510=00001100.0100100100002N4=F3×N3=12.2851562510=0000

1100.0100100100002

D4=F3×D3=0.9995117187510=00000000.1111111111102D4=F3×D3=0.9995117187510=

00000000.1111111111102

F4=2−D4=1.0004882812510=00000001.0000000000102F4=2−D4=1.0004882812510=000

00001.0000000000102

The result after 5 iterations is:

N5=12.2851562510=00001100.0100100100002N5=12.2851562510=00001100.010010010

0002

which deviates from the correct result by

100%−|N5Q|=0.0045%

VI. IMPLEMENTATION RESULTS

RTL netlist of the Goldschmidt algorithm of fast division has been shown in fig 2. In this

work Xilinx Vivado is used for the implementation of Goldschmidt algorithm of fast division

where MODELSIM has been used for its simulation.

Fig1: Implementation of Goldschmidt Divider

Gyancity Journal of Electronics and Computer Science,
 Vol.2, No.1, pp.43-48, March 2017

 ISSN: 2446–2918 DOI: 10.21058/gjecs.2017.21005

47

Fig2: RTL netlist of the above Binary Divider

Resource Estimation Available utilization

FF 25 35200 0.07

LUT 37 17600 0.21

I/O 33 100 33.00

BUFG 1 32 3.12

DSP48 2 80 2.50

Fig3: Post-implementation summary

VII. CONCLUSION

Goldschmidt algorithm of fast division has been successfully implemented using Xilinx Vivado and the work

summary has been successfully shown in the above diagrams.

VIII. FUTURE WORK

Goldschmidt’s algorithm lead to the reduction in the total hardware used even if pipelining was used. Using

partial pipelining and feedback, the result with the same accuracy level can be obtained. The topicality of this

subject is growing with recent advances in various hardware technologies, as the structure density of the new

devices grows and the price per element decreases and with rising demands for minimization of the current

consumption. The synthesized model is capable of performing arithmetic operations of unsigned bits as well.

IX. REFERENCES

[1] Purushottam D. Chidgupkar and Mangesh T. Karad, “The Implementation of Vedic Algorithms in Digital

Signal Processing”, Global J. of Engng. Educ., Vol.8, No.2 © 2004 UICEE Published in Australia.

[2] Himanshu Thapliyal and Hamid R. Arabnia, “A Time-Area- Power Efficient Multiplier and Square

Architecture Based On Ancient Indian Vedic Mathematics”, Department of Computer Science, The

University of Georgia, 415 Graduate Studies Research Center Athens, Georgia 30602-7404, U.S.A.

[3] E. Abu-Shama, M. B. Maaz, M. A. Bayoumi, “A Fast and Low Power Multiplier Architecture”, The

Center for Advanced Computer Studies, The University ofSouthwestern Louisiana Lafayette, LA 70504.

[4] Harpreet Singh Dhillon and Abhijit Mitra, “A Reduced- Bit Multiplication Algorithm for Digital

Arithmetics”, International Journal of Computational and Mathematical Sciences 2;2 © www.waset.org

Spring 2008.

[5] Shamim Akhter, “VHDL Implementation of Fast NXN Multiplier Based on Vedic Mathematics”, Jaypee

Institute of Information Technology University, Noida, 201307 UP, INDIA, 2007 IEEE.

[6] Charles E. Stroud, “A Designer’s Guide to Built-In Self-Test”, University of North Carolina at Charlotte,

©2002 Kluwer Academic Publishers New York, Boston, Dordrecht, London, Moscow.

[7] Douglas Densmore, “Built-In-Self Test (BIST) Implementations An overview of design tradeoffs”,

University of Michigan EECS 579 – Digital Systems Testing by Professor John P. Hayes 12/7/01.

Gyancity Journal of Electronics and Computer Science,
 Vol.2, No.1, pp.43-48, March 2017

 ISSN: 2446–2918 DOI: 10.21058/gjecs.2017.21005

48

[8] Shripad Kulkarni, “Discrete Fourier Transform (DFT) by using Vedic Mathematics”, report,

vedicmathsindia.blogspot.com, 2007.

[9] Jagadguru Swami Sri Bharati Krishna Tirthji Maharaja,“Vedic Mathematics”, Motilal Banarsidas,

Varanasi, India, 1986.

[10] Himanshu Thapliyal, Saurabh Kotiyal and M. B Srinivas, “Design and Analysis of A Novel Parallel

Square and Cube Architecture Based On Ancient Indian Vedic Mathematics”, Centre for VLSI and

Embedded System Technologies, International Institute of Information Technology, Hyderabad, 500019,

India, 2005 IEEE.

